NUK - logo
E-viri
Recenzirano Odprti dostop
  • Bacterial RNA Biology on a ...
    Hör, Jens; Gorski, Stanislaw A.; Vogel, Jörg

    Molecular cell, 06/2018, Letnik: 70, Številka: 5
    Journal Article

    Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over. RNA-seq-based approaches are revolutionizing how bacterial RNA biology can be studied. Hör, Gorski, and Vogel review the available global methods that can be used to chart the increasingly diverse number of RNA species and functions in any microbe of interest.