NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • A Mildly Relativistic Outfl...
    Cendes, Y.; Berger, E.; Alexander, K. D.; Gomez, S.; Hajela, A.; Chornock, R.; Laskar, T.; Margutti, R.; Metzger, B.; Bietenholz, M. F.; Brethauer, D.; Wieringa, M. H.

    Astrophysical journal/˜The œAstrophysical journal, 10/2022, Letnik: 938, Številka: 1
    Journal Article

    Abstract We present late-time radio/millimeter (as well as optical/UV and X-ray) detections of tidal disruption event (TDE) AT2018hyz, spanning 970–1300 d after optical discovery. In conjunction with earlier deeper limits, including those at ≈700 days, our observations reveal rapidly rising emission at 0.8–240 GHz, steeper than F ν ∝ t 5 relative to the time of optical discovery. Such a steep rise cannot be explained in any reasonable scenario of an outflow launched at the time of disruption (e.g., off-axis jet, sudden increase in the ambient density), and instead points to a delayed launch. Our multifrequency data allow us to directly determine the radius and energy of the radio-emitting outflow, and we find from our modeling that the outflow was launched ≈750 days after optical discovery. The outflow velocity is mildly relativistic, with β ≈ 0.25 and ≈0.6 for a spherical geometry and a 10° jet geometry, respectively, and the minimum kinetic energy is E K ≈ 5.8 × 10 49 and ≈6.3 × 10 49 erg, respectively. This is the first definitive evidence for the production of a delayed mildly relativistic outflow in a TDE; a comparison to the recently published radio light curve of ASASSN-15oi suggests that the final rebrightening observed in that event (at a single frequency and time) may be due to a similar outflow with a comparable velocity and energy. Finally, we note that the energy and velocity of the delayed outflow in AT2018hyz are intermediate between those of past nonrelativistic TDEs (e.g., ASASSN-14li, AT2019dsg) and the relativistic TDE Sw J1644+57. We suggest that such delayed outflows may be common in TDEs.