NUK - logo
E-viri
Recenzirano Odprti dostop
  • Global and regional emissio...
    Saikawa, E.; Rigby, M.; Prinn, R. G.; Montzka, S. A.; Miller, B. R.; Kuijpers, L. J. M.; Fraser, P. J. B.; Vollmer, M. K.; Saito, T.; Yokouchi, Y.; Harth, C. M.; Mühle, J.; Weiss, R. F.; Salameh, P. K.; Kim, J.; Li, S.; Park, S.; Kim, K.-R.; Young, D.; O'Doherty, S.; Simmonds, P. G.; McCulloch, A.; Krummel, P. B.; Steele, L. P.; Lunder, C.; Hermansen, O.; Maione, M.; Arduini, J.; Yao, B.; Zhou, L. X.; Wang, H. J.; Elkins, J. W.; Hall, B.

    Atmospheric chemistry and physics, 11/2012, Letnik: 12, Številka: 21
    Journal Article

    HCFC-22 (CHClF2, chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs) controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA) and a few Northern Hemisphere air samples (mostly from Trinidad Head) using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP), as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates that the global HCFC-22 emissions have an increasing trend between 1995 and 2009. We further find a surge in HCFC-22 emissions between 2005 and 2009 from developing countries in Asia – the largest emitting region including China and India. Globally, substantial emissions continue despite production and consumption being phased out in developed countries currently.