NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • NIMG-63. MACHINE LEARNING U...
    Khanna, Omaditya; Kazerooni, Anahita Fathi; Garcia, Jose A; Sako, Chiharu; Arif, Sherjeel; Shi, Wenyin; Davatzikos, Christos

    Neuro-oncology (Charlottesville, Va.), 11/2021, Letnik: 23, Številka: Supplement_6
    Journal Article

    Abstract PURPOSE Although WHO grade I meningiomas are considered ‘benign’ tumors, an elevated Ki-67 is one crucial factor that has been shown to influence clinical outcomes. In this study, we use standard pre-operative MRI and develop a machine learning (ML) model to predict the Ki-67 in WHO grade I meningiomas. METHODS A retrospective analysis was performed of 306 patients that underwent surgical resection. The mean and median Ki-67 of tumor specimens were 4.84 ± 4.03% (range: 0.3–33.6) and 3.7% (Q1:2.3%, Q3:6%), respectively. Pre-operative MRI was used to perform radiomic feature extraction (N=2,520) followed by ML modeling using least absolute shrinkage and selection operator (LASSO) wrapped with support vector machine (SVM) through nested cross-validation on a discovery cohort (N=230), to stratify tumors based on Ki-67 < 5% and ≥ 5%. A replication cohort (N=76) was kept ‘unseen’ in order to provide insights regarding the generalizability of our predictive model. RESULTS A total of 60 radiomic features extracted from seven different MRI sequences were used in the final model. With this model, an AUC of 0.84 (95% CI: 0.78-0.90), with associated sensitivity and specificity of 84.1% and 73.3%, respectively, were achieved in the discovery cohort. The selected features in the trained predictive model were then applied to the subjects of the replication cohort and the model was applied independently in this cohort. An AUC of 0.83 (95% CI: 0.73-0.94), with a sensitivity of 82.6% and specificity of 85.5% was obtained for this independent testing. Furthermore, the model performed commendably when applied to all skull base and non-skull base tumors in our patient cohort, evidenced by comparable AUC values of 0.86 and 0.83, respectively. CONCLUSION The results of this study may provide enhanced diagnostics to the surgeon pre-operatively such that it can guide surgical strategy and individual patient treatment paradigms.