NUK - logo
E-viri
Recenzirano Odprti dostop
  • Optimization of the JUNO li...
    Anfimov, N.; de André, J.P.A.M.; Bordereau, C.; Cabrera, A.; Cerna, C.; Chen, H.S.; Chen, X.R.; Chen, Y.; Cheng, Y.P.; Chuvashova, A.; Clementi, C.; Di Lorenzo, S. Conforti; Dal Corso, F.; Deng, Z.Y.; Depnering, W.; Druillole, F.; Dwyer, D.A.; Fan, L.; Gan, H.N.; Giuliani, F.; Gonchar, M.; Gromov, M.; Guardone, N.; Gul, M.; Guo, Z.; Hackspacher, P.; Hagner, C.; Heinz, T.; Hor, Y.K.; Hu, B.Z.; Huang, H.X.; Huo, W.J.; Hussain, S.; Insolia, A.; Jaffe, D.E.; Jen, K.L.; Ji, X.L.; Ji, X.P.; Jing, X.P.; Khosonthongkee, K.; Kinz, P.; Krumshteyn, Z.; Kruth, A.; Lei, L.; Li, H.L.; Li, J.Q.; Li, S.C.; Li, S.F.; Liang, H.; Liu, H.; Liu, H.; Liu, M.; Liu, Y.; Ludhova, L.; Luo, W.M.; Martellini, C.; Morozov, N.; Napolitano, J.; Paoloni, A.; Pelliccia, N.; Peng, J.C.; Qiao, H.; Rezinko, T.; Romani, A.; Roskovec, B.; Ruan, X.C.; Sawangwit, U.; Settimo, M.; Shi, G.; Shi, Y.J.; Songwadhana, J.; Soonthornthum, B.; Sotnikov, A.; Stahl, A.; Štefánik, D.; Strati, V.; Trzaska, W.; Wang, C.H.; Wang, J.; Wang, N.Y.; Wang, Y.F.; Watcharangkool, A.; Wei, W.; Wu, D.R.; Wysotzki, C.; Xia, D.M.; Xie, Z.Q.; Yang, H.; Yang, X.Y.; Young, B.L.; Yu, C.X.; Yuan, Y.; Zeng, Y.D.; Zhang, G.Q.; Zhang, Z.Y.; Zhao, S.J.; Zheng, H.; Zhou, S.; Zong, L.; Zou, J.H.

    Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 02/2021, Letnik: 988
    Journal Article

    To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB.