NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Changing amounts and source...
    Feng, Weimin; Hardt, Benjamin F.; Banner, Jay L.; Meyer, Kevin J.; James, Eric W.; Musgrove, MaryLynn; Edwards, R. Lawrence; Cheng, Hai; Min, Angela

    Earth and planetary science letters, 09/2014, Letnik: 401
    Journal Article

    The U.S. southwest has a limited water supply and is predicted to become drier in the 21st century. An improved understanding of factors controlling moisture sources and availability is aided by reconstruction of past responses to global climate change. New stable isotope and growth-rate records for a central Texas speleothem indicate a strong influence of Gulf of Mexico (GoM) moisture and increased precipitation from 15.5 to 13.5 ka, which includes the majority of the Bølling–Allerød warming (BA: 14.7–12.9 ka). Coeval speleothem records from 900 and 1200 km to the west allow reconstruction of regional moisture sources and atmospheric circulation. The combined isotope and growth-rate time series indicates 1) increased GoM moisture input during the majority of the BA, producing greater precipitation in Texas and New Mexico; and 2) a retreat of GoM moisture during Younger Dryas cooling (12.9–11.5 ka), reducing precipitation. These results portray how late-Pleistocene atmospheric circulation and moisture distribution in this region responded to global changes, providing information to improve models of future climate. •Speleothem growth rate from Texas reveals a wetter Bølling–Allerød (BA).•Multi-speleothem growth records suggest a wetter BA for much of the U.S. SW.•Wetter BA was driven by increased Gulf of Mexico-sourced summer precipitation.