NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Magnetics on silicon: an en...
    Mathuna, S.C.O.; O'Donnell, T.; Ningning Wang; Rinne, K.

    IEEE transactions on power electronics, 05/2005, Letnik: 20, Številka: 3
    Journal Article

    Data from the ITRS2003 roadmap for 2010 predicts voltages for microprocessors in hand-held electronics will decrease to 0.8V with current and power increasing to 4A and 3W, respectively. Consequently, low power converters will move to multimegahertz frequencies with a resulting reduction in capacitor and inductor values by factors of 5 and 20, respectively. Values required at 10 MHz, for a low power buck converter, are estimated at 130 nH and 0.6 uF, compatible with the integration of magnetics onto silicon and the concept of power supply-on-chip (PSOC). A review of magnetics-on-silicon shows that inductance values of 20 to 40nH/mm/sup 2/ can be achieved for winding resistances less than 1/spl Omega/. A 1-/spl mu/H inductance can be achieved at 5 MHz with dc resistance of 1/spl Omega/ and a Q of four. Thin film magnetic materials, compatible with semiconductor processing, offer power loss density that is lower than ferrite by a factor of 5 at 10 MHz. Other data reported includes, lowest dc resistance values of 120 m/spl Omega/ for an inductance of 120 nH; highest Q of 15 for an inductance of 350 nH and a current of 1 A for a 1- /spl mu/H inductor. Future technology challenges include reducing losses using high resistivity, laminated magnetic materials, and increasing current carrying capability using high aspect-ratio, electroplated copper conductors. Compatible technologies are available in the power switch, control, and packaging space. Integrated capacitor technology is still a long-term challenge with maximum reported values of 400 nF/cm/sup 2/.