NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Influence of channel aspect...
    Liou, T.-M.; Chang, S.W.; Chen, J.S.; Yang, T.L.; Lan, Yi-An

    International journal of heat and mass transfer, 11/2009, Letnik: 52, Številka: 23
    Journal Article

    Centerline heat transfer measurements along two opposite ribbed walls in three rotating rectangular ducts roughened by 45° staggered ribs with channel aspect ratios (AR) of 1:1, 2:1 and 4:1 are performed at Reynolds ( Re), rotation ( Ro) and buoyancy ( Bu) numbers in the ranges of 5000–30,000, 0–2, and 0.005–8.879, respectively. These channel geometries are in common use as the internal cooling passages of a gas turbine rotor blade and the tested Ro and Bu ranges are considerably extended from the previous experiences. This study focuses on the heat transfer characteristics in response to the change of AR under the parameter ranges examined. With zero-rotation ( Ro = 0), the local Nusselt numbers ( Nu 0) along the centerlines of two opposite ribbed walls increase as AR increases due to the increased rib-height to channel-height ratio. The Bu impact on heat transfer appears to be AR dependent, i.e. the increase of Bu elevates Nusselt number ratios Nu/ Nu 0 in the square channel but impairs heat transfer in the rectangular channels of AR = 2 and 4. Acting by the Coriolis effect alone, all the leading edge Nu values in the present Ro range are lower than the zero-rotation references but started to recover as Ro increases from 0.1 in the channels of AR = 1, 2 and from 0.3 in the channel of AR = 4. The trailing edge Nu/ Nu 0 ratios increase consistently from unity as Ro increases but their responses toward the increase of AR are less systematic than those found along the leading edge. The above findings, with the aids of extended Ro and Bu ranges achieved by this study, serve as the original contributions for this technical community. The Nu/ Nu 0 ratios in the rotating channels of AR = 1, 2, and 4 fall in the ranges of 0.6–2.2, 0.5–2.7, and 0.5–2.1, respectively. A set of heat transfer correlations is derived to represent all the heat transfer data in the periodically developed flow regions of three rotating ducts.