NUK - logo
E-viri
Recenzirano Odprti dostop
  • aPKC Inhibition by Par3 CR3...
    Soriano, Erika V.; Ivanova, Marina E.; Fletcher, Georgina; Riou, Philippe; Knowles, Philip P.; Barnouin, Karin; Purkiss, Andrew; Kostelecky, Brenda; Saiu, Peter; Linch, Mark; Elbediwy, Ahmed; Kjær, Svend; O’Reilly, Nicola; Snijders, Ambrosius P.; Parker, Peter J.; Thompson, Barry J.; McDonald, Neil Q.

    Developmental cell, 08/2016, Letnik: 38, Številka: 4
    Journal Article

    Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation. Display omitted •Sequences flanking the Par3 CR3 consensus PKC site cooperate to inhibit aPKC•A Par3 CR3 inhibitory arm disrupts aPKC P-loop/αB/αC contacts and αC-helix position•Mutating either CR3 arm switches Par3 into an efficient aPKC substrate in vitro•Equivalent Bazooka substitutions alter its apical localization to AJs in vivo Par3 is required for aPKC membrane recruitment, yet it polarizes to adherens junctions upon phosphorylation. Soriano et al. show that Par3 antagonizes active aPKC kinase by separating crucial N-lobe contacts. Disrupting high-affinity Par3 contacts switches it to an efficient aPKC substrate and polarizes Par3/Bazooka from apical domains to adherens junctions.