NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Glutamatergic dysfunction i...
    Kruse, Andreas O; Bustillo, Juan R

    Translational psychiatry, 12/2022, Letnik: 12, Številka: 1
    Journal Article

    The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.