NUK - logo
E-viri
Recenzirano Odprti dostop
  • Global diversity and geogra...
    Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S.; Wijesundera, Ravi; Ruiz, Luis Villarreal; Vasco-Palacios, Aída M.; Thu, Pham Quang; Suija, Ave; Smith, Matthew E.; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L.; Nilsson, R. Henrik; Morgado, Luis N.; Mayor, Jordan; May, Tom W.; Majuakim, Luiza; Lodge, D. Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W.; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q.; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy

    Science, 11/2014, Letnik: 346, Številka: 6213
    Journal Article

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. Assessing fungal diversity worldwideFungi are hyperdiverse but poorly known, despite their ecological and economic impacts. Tedersoo et al. collected nearly 15,000 topsoil samples from 365 sites worldwide and sequenced their genomes (see the Perspective by Wardle and Lindahl). Overall, they found a striking decline in fungal species richness with distance from the equator. For some specialist groups though, diversity depended more on the abundance of host plants than host diversity or geography. The findings reveal a huge gap between known and described species and the actual numbers of distinct fungi in the world's soils.Science, this issue 10.1126/science.1256688; see also p. 1052