NUK - logo
E-viri
Recenzirano Odprti dostop
  • Multiparameter Lead Optimiz...
    Osborne, James D; Matthews, Thomas P; McHardy, Tatiana; Proisy, Nicolas; Cheung, Kwai-Ming J; Lainchbury, Michael; Brown, Nathan; Walton, Michael I; Eve, Paul D; Boxall, Katherine J; Hayes, Angela; Henley, Alan T; Valenti, Melanie R; De Haven Brandon, Alexis K; Box, Gary; Jamin, Yann; Robinson, Simon P; Westwood, Isaac M; van Montfort, Rob L. M; Leonard, Philip M; Lamers, Marieke B. A. C; Reader, John C; Aherne, G. Wynne; Raynaud, Florence I; Eccles, Suzanne A; Garrett, Michelle D; Collins, Ian

    Journal of medicinal chemistry, 06/2016, Letnik: 59, Številka: 11
    Journal Article

    Multiparameter optimization of a series of 5-((4-aminopyridin-2-yl)­amino)­pyrazine-2-carbonitriles resulted in the identification of a potent and selective oral CHK1 preclinical development candidate with in vivo efficacy as a potentiator of deoxyribonucleic acid (DNA) damaging chemotherapy and as a single agent. Cellular mechanism of action assays were used to give an integrated assessment of compound selectivity during optimization resulting in a highly CHK1 selective adenosine triphosphate (ATP) competitive inhibitor. A single substituent vector directed away from the CHK1 kinase active site was unexpectedly found to drive the selective cellular efficacy of the compounds. Both CHK1 potency and off-target human ether-a-go-go-related gene (hERG) ion channel inhibition were dependent on lipophilicity and basicity in this series. Optimization of CHK1 cellular potency and in vivo pharmacokinetic–pharmacodynamic (PK–PD) properties gave a compound with low predicted doses and exposures in humans which mitigated the residual weak in vitro hERG inhibition.