NUK - logo
E-viri
Recenzirano Odprti dostop
  • pH modulates the activity a...
    Alaiwa, Mahmoud H. Abou; Reznikov, Leah R.; Gansemer, Nicholas D.; Sheets, Kelsey A.; Horswill, Alexander R.; Stoltz, David A.; Zabner, Joseph; Welsh, Michael J.

    Proceedings of the National Academy of Sciences - PNAS, 12/2014, Letnik: 111, Številka: 52
    Journal Article

    Significance Although lungs are continuously bombarded by bacteria, pulmonary defense mechanisms normally keep them sterile. Those defenses include a complex mixture of antimicrobial peptides in the thin layer of liquid coating the airway surface. In cystic fibrosis, impaired bicarbonate secretion causes the airway surface liquid to become abnormally acidic. Here we found that an acidic pH impairs the ability of two key airway antimicrobial peptides, β-defensin-3 and LL-37, to kill bacteria. When these peptides were combined, they exhibited synergistic killing of Staphylococcus aureus , an organism that infects cystic fibrosis lungs. However, an acidic pH reduced their synergistic effect. Thus, an acidic pH impairs an important respiratory defense mechanism and may predispose the lungs of people with cystic fibrosis to bacterial infection. The pulmonary airways are continuously exposed to bacteria. As a first line of defense against infection, the airway surface liquid (ASL) contains a complex mixture of antimicrobial factors that kill inhaled and aspirated bacteria. The composition of ASL is critical for antimicrobial effectiveness. For example, in cystic fibrosis an abnormally acidic ASL inhibits antimicrobial activity. Here, we tested the effect of pH on the activity of an ASL defensin, human β-defensin-3 (hBD-3), and the cathelicidin-related peptide, LL-37. We found that reducing pH from 8.0 to 6.8 reduced the ability of both peptides to kill Staphylococcus aureus . An acidic pH also attenuated LL-37 killing of Pseudomonas aeruginosa . In addition, we discovered synergism between hBD-3 and LL-37 in killing S. aureus . LL-37 and lysozyme were also synergistic. Importantly, an acidic pH reduced the synergistic effects of combinations of ASL antibacterials. These results indicate that an acidic pH reduces the activity of individual ASL antimicrobials, impairs synergism between them, and thus may disrupt an important airway host defense mechanism.