NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Using tree ring data as a p...
    Schilling, O.S.; Doherty, J.; Kinzelbach, W.; Wang, H.; Yang, P.N.; Brunner, P.

    Journal of hydrology (Amsterdam), 2014, Letnik: 519
    Journal Article

    •Tree ring data are used as a proxy for transpiration in the calibration data set.•Transpiration data (T) is vital for simulation of efficiency of freshwater releases.•Tree ring records provide accessible, complimentary information to hydraulic heads.•The riparian water use efficiency of ecological freshwater releases is assessed.•To fully use data captured in tree rings more data relating growth to T is required. The interactions between surface water, the vadose zone, groundwater, and vegetation are governed by complex feedback mechanisms. Numerical models simulating these interactions are essential in quantifying these processes. However, the notorious lack of field observations results in highly uncertain parameterizations. We suggest a new type of observation data to be included in the calibration data set for hydrological models simulating interactions with vegetation: Tree rings as a proxy for transpiration. We use the lower Tarim River as an example site for our approach. In order to forestall the loss of riparian ecosystems from reduced flow over a 300km reach of the lower Tarim River, the Chinese government initiated periodical, ecological water releases. The water exchange processes in this region were simulated for a cross-section on the lower reaches of the Tarim River using a numerical model (Hydro-GeoSphere) calibrated against observations of water tables, as well as transpiration estimated from tree ring growth. A predictive uncertainty analysis quantifying the worth of different components of the observation dataset in reducing the uncertainty of model predictions was carried out. The flow of information from elements of the calibration dataset to the different parameters employed by the model was also evaluated. The flow of information and the uncertainty analysis demonstrate that tree ring records can significantly improve confidence in modeling ecosystem dynamics, even if these transpiration estimates are uncertain. To use the full potential of the historical information encapsulated in the Tarim River tree rings, however, the relationship between tree ring growth and transpiration rates has to be studied further.