NUK - logo
E-viri
Recenzirano Odprti dostop
  • Identification and characte...
    Lavinder, Jason J.; Wine, Yariv; Giesecke, Claudia; Ippolito, Gregory C.; Horton, Andrew P.; Lungu, Oana I.; Hoi, Kam Hon; DeKosky, Brandon J.; Murrin, Ellen M.; Wirth, Megan M.; Ellington, Andrew D.; Dörner, Thomas; Marcotte, Edward M.; Boutz, Daniel R.; Georgiou, George

    Proceedings of the National Academy of Sciences, 02/2014, Letnik: 111, Številka: 6
    Journal Article

    Most vaccines confer protection via the elicitation of serum antibodies, yet more than 100 y after the discovery of antibodies, the molecular composition of the human serum antibody repertoire to an antigen remains unknown. Using high-resolution liquid chromatography tandem MS proteomic analyses of serum antibodies coupled with next-generation sequencing of the V gene repertoire in peripheral B cells, we have delineated the human serum IgG and B-cell receptor repertoires following tetanus toxoid (TT) booster vaccination. We show that the TT ⁺ serum IgG repertoire comprises ∼100 antibody clonotypes, with three clonotypes accounting for >40% of the response. All 13 recombinant IgGs examined bound to vaccine antigen with K d ∼ 10 ⁻⁸–10 ⁻¹⁰ M. Five of 13 IgGs recognized the same linear epitope on TT, occluding the binding site used by the toxin for cell entry, suggesting a possible explanation for the mechanism of protection conferred by the vaccine. Importantly, only a small fraction (<5%) of peripheral blood plasmablast clonotypes (CD3 ⁻CD14 ⁻CD19 ⁺CD27 ⁺⁺CD38 ⁺⁺CD20 ⁻TT ⁺) at the peak of the response (day 7), and an even smaller fraction of memory B cells, were found to encode antibodies that could be detected in the serological memory response 9 mo postvaccination. This suggests that only a small fraction of responding peripheral B cells give rise to the bone marrow long-lived plasma cells responsible for the production of biologically relevant amounts of vaccine-specific antibodies (near or above the K d). Collectively, our results reveal the nature and dynamics of the serological response to vaccination with direct implications for vaccine design and evaluation.