NUK - logo
E-viri
Recenzirano Odprti dostop
  • Crystal Structure of the He...
    Huang, Nian; Chelliah, Yogarany; Shan, Yongli; Taylor, Clinton A.; Yoo, Seung-Hee; Partch, Carrie; Green, Carla B.; Zhang, Hong; Takahashi, Joseph S.

    Science, 07/2012, Letnik: 337, Številka: 6091
    Journal Article

    The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 Å resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits—bHLH, PAS-A, and PAS-B—tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.