NUK - logo
E-viri
Recenzirano Odprti dostop
  • Performance of electron and...
    Abbott, B.; Abbott, D. C.; Aielli, G.; Coutinho, Y. Amaral; Amelung, C.; Amrouche, C. S.; Andari, N.; Arling, J.-H.; Bhattarai, P.; Bi, R.; Brandt, O.; Bruni, L. S.; Bryngemark, L.; Calafiura, P.; Carducci, G.; Choi, K.; Citron, Z. H.; Cooper-Sarkar, A. M.; Corrigan, E. E.; Damp, J.; De Salvo, A.; Nardo, R. Di; Djuvsland, J. I.; Dubinin, F.; Ducourthial, A.; Ferguson, S. W.; Castillo, L. R. Flores; Foo, J. H.; Genest, M. H.; Giuli, F.; Grummer, A.; Hoad, X.; Holzbock, M.; Hoya, J.; Hrabovsky, M.; Huffman, T. B.; Huston, J.; Igonkina, O.; Islam, W.; Konya, B.; Lampoudis, C.; Laurier, A.; Lester, C. G.; Levinson, L. J.; Li, J.; Lobodzinska, E. M.; Ramos, J. Manjarres; Mankinen, K. H.; Marjanovic, M.; Marti-Garcia, S.; Meyer, C.; Michetti, M.; Mistry, K. P.; Monk, J.; Morgenstern, S.; Moskalets, T.; Negri, A.; Nisius, R.; Nurse, E.; Oda, S.; Okazaki, Y.; Pleier, M.-A.; Plotnikova, E.; Rembser, C.; Rimoldi, M.; Røhne, O.; Ronzani, M.; Roy, A.; Rozanov, A.; Rybar, M.; Sampsonidou, D.; Santos, H.; Santra, A.; Sato, K.; Schmieden, K.; Renous, D. Shaked; Shcherbakova, A.; Sherman, A. D.; Shulga, E.; Sidebo, P. E.; Smirnova, O.; Soloshenko, A.; Stamen, R.; Stark, J.; Strizenec, P.; Kate, H. Ten; Thomas, J. P.; Tsiareshka, P. V.; Tu, Y.; Usai, G.; Vandelli, W.; Vandenbroucke, M.; Schroeder, T. Vazquez; Vermeulen, J. C.; Vrba, V.; Wallangen, V.; Zanzi, D.; Zeng, J. C.; Zhang, G.; Zhao, Z.

    The European physical journal. C, Particles and fields, 2020, Letnik: 80, Številka: 1
    Journal Article

    Electron and photon triggers covering transverse energies from 5  GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton–proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1 × 10 34 cm - 2 s - 1 , and a similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton–proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31  GeV , and rises to 96% at 60  GeV ; the trigger efficiency of a 25  GeV leg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30  GeV . For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5  GeV above the corresponding trigger threshold.