NUK - logo
E-viri
Recenzirano Odprti dostop
  • MicroRNA‐124‐3p regulates c...
    Deng, Danni; Wang, Lei; Chen, Yao; Li, Bowen; Xue, Lian; Shao, Naiyuan; Wang, Qiang; Xia, Xiwei; Yang, Yilin; Zhi, Feng

    Cancer science, July 2016, Letnik: 107, Številka: 7
    Journal Article

    The PIM1 protein is an important regulator of cell proliferation, the cell cycle, apoptosis, and metabolism in various human cancers. MicroRNAs (miRNAs) are powerful post‐transcriptional gene regulators that function through translational repression or transcript destabilization. Therefore, we aimed to identify whether a close relationship exists between PIM1 and miRNAs. PIM1 protein levels and mRNA levels were significantly upregulated in astrocytoma tissues, indicating the oncogenic role of PIM1 in astrocytoma. Further bioinformatics analysis indicated that miR‐124‐3p targeted the 3′‐UTR of PIM1. We also observed an inverse correlation between the miR‐124‐3p levels and PIM1 protein or mRNA levels in astrocytoma samples. Next, we experimentally confirmed that miR‐124‐3p directly recognizes the 3′‐UTR of the PIM1 transcript and regulates PIM1 expression at both the protein and mRNA levels. Furthermore, we examined the biological consequences of miR‐124‐3p targeting PIM1 in vitro. We showed that the repression of PIM1 in astrocytoma cancer cells by miR‐124‐3p suppressed proliferation, invasion, and aerobic glycolysis and promoted apoptosis. We observed that the restoration or inhibition of PIM1 activity resulted in effects that were similar to those induced by miR‐124‐3p inhibitors or mimics in cancer cells. Finally, overexpression of PIM1 rescued the inhibitory effects of miR‐124‐3p. In summary, these findings aid in understanding the tumor‐suppressive role of miR‐124‐3p in astrocytoma pathogenesis through the inhibition of PIM1 translation. miR‐124‐3p inhibits astrocytoma cancer cell proliferation, invasion and aerobic glycolysis, and promotes apoptosis in vitro.