NUK - logo
E-viri
Recenzirano Odprti dostop
  • Predator lipids induce para...
    Selander, Erik; Kubanek, Julia; Hamberg, Mats; Andersson, Mats X.; Cervin, Gunnar; Pavia, Henrik

    Proceedings of the National Academy of Sciences - PNAS, 05/2015, Letnik: 112, Številka: 20
    Journal Article

    Interactions among microscopic planktonic organisms underpin the functioning of open ocean ecosystems. With few exceptions, these organisms lack advanced eyes and thus rely largely on chemical sensing to perceive their surroundings. However, few of the signaling molecules involved in interactions among marine plankton have been identified. We report a group of eight small molecules released by copepods, the most abundant zooplankton in the sea, which play a central role in food webs and biogeochemical cycles. The compounds, named copepodamides, are polar lipids connecting taurine via an amide to isoprenoid fatty acid conjugate of varying composition. The bloom-forming dinoflagellate Alexandrium minutum responds to pico- to nanomolar concentrations of copepodamides with up to a 20-fold increase in production of paralytic shellfish toxins. Different copepod species exude distinct copepodamide blends that contribute to the species-specific defensive responses observed in phytoplankton. The signaling system described here has far reaching implications for marine ecosystems by redirecting grazing pressure and facilitating the formation of large scale harmful algal blooms. Significance We report the chemical basis for a critical question in ocean science: how do single-celled algae, which are responsible for almost half of Earth's photosynthesis, sense their environment to respond appropriately to the lethal threat of predation? The increasing frequency of toxic algal blooms, with worldwide consequences to human health, fisheries, and marine ecosystem functioning, has garnered much attention in recent years, but it has remained unclear how algal toxicity is regulated. With the current paper, we show that substantial (20×) induction of toxicity occurs when one species of algae is exposed to a family of previously unknown chemical cues from predatory zooplankton (copepods). The copepodamides represent the first discovery, to our knowledge, of chemical cues mediating interactions between marine zooplankton and their prey.