NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Characterization factors an...
    Thind, Maninder P.S.; Heath, Garvin; Zhang, Yimin; Bhatt, Arpit

    The Science of the total environment, 05/2022, Letnik: 822
    Journal Article

    In this paper, we develop a framework and metrics for estimating the impact of emission sources on regulatory compliance and human health for applications in air quality planning and life cycle impact assessment (LCIA). Our framework is based on a pollutant's characterization factor (CF) and three new metrics: Available Regulatory Capacity for Incremental Emissions (ARCIE), Source CF Ratio, and Activity Health Impact (AHI) Ratio. ARCIE can be used to assess whether a receptor location has capacity to accommodate additional source emissions while complying with regulatory limits. We present CF as a midpoint indicator of health impacts per unit mass of emitted pollutant. Source CF Ratio enables comparison of potential new-source locations based on human health impacts. The AHI Ratio estimates the health impacts of a pollutant in relation to the utilization of the source for each unit of product or service. These metrics can be applied to any pollutant, energy source sector (e.g., agriculture, electricity), source type (point, line, area), and spatial modeling domain (nation, state, city, region). We demonstrate these metrics through a case study of fine particulate (PM2.5) emissions from U.S. corn stover harvesting and local processing at various scales, representing steps in the biofuel production process. We model PM2.5 formation in the atmosphere using a novel reduced-complexity chemical transport model called the Intervention Model for Air Pollution (InMAP). Through this case study, we present the first area-source PM2.5 CFs that address the recommendations of several LCIA studies to establish spatially explicit CFs specific to an energy source sector or type. Overall, the framework developed in this work provides multiple new ways to consider the potential impacts of air emissions through spatially differentiated metrics. Display omitted •Framework and metrics for air quality planning process and LCIA•Metrics demonstrated to a life cycle stage of biofuel production•Application of a high-resolution, spatially-explicit air quality model – InMAP•First area-source PM2.5 characterization factors