ALL libraries (COBIB.SI union bibliographic/catalogue database)
  • Alpha heating, isotopic mass, and fast ion effects in deuterium-tritium experiments
    Budny, R. V. ...
    Alpha heating experiments in the Tokamak Fusion Test Reactor (TFTR) and in the Joint European Torus (JET) 1997 DTE1 campaign arc reexamined. In TFTR supershots central electron heating of both ... deuterium only and deuterium-tritium supershots was dominated by thermal ion-electron heat transfer rate p(ie). The higher T-e in deuterium-tritium supershots was mainly due to higher T-i largely caused by isotopic mass effects of neutral beam-thermal ion heating. The thermal ion-electron heating dominated the electron heating in the center. The ratio of the predicted alpha to total electron heating rates f(alp) is less than 0.30. Thus alpha heating (and possible favorable isotopic mass scaling of the thermal plasma) were too small to be measured reliably. The JET alpha heating Hot-Ion H-mode discharges had lower T-i/T-e, and thus had lower p(ie) and the deuterium-tritium DT discharges had higher f(alp), than in TFTR. There were not enough comparable discharges to verify alpha heating. The high performance phases consisted of rampup to brief flattop durations. At equal times during the rampup phase central T-e and T-i were linearly correlated with the thermal hydrogcnic isotopic mass < A >(hyd) which co-varied with beam ion pressure, the tritium fraction of neutral beam power, and the time delay to the first significant sawteeth which interrupted the T-e increases. For both devices the expected alpha healing rate and the null hypothesis of no alpha heating arc consistent with the measurements within the measurement and modeling uncertainties
    Source: Nuclear fusion. - ISSN 0029-5515 (Iss. 9, Vol. 58, 2018)
    Type of material - article, component part
    Publish date - 2018
    Language - english
    COBISS.SI-ID - 31599655
    DOI