E-resources
Open access
-
Fakhry, Ahmed; Jiang, Xinyi; Xiao, Jaclyn; Chaudhari, Gunvant; Han, Asriel; Khanzada, Amil
03/2021Journal Article
Fast and affordable solutions for COVID-19 testing are necessary to contain the spread of the global pandemic and help relieve the burden on medical facilities. Currently, limited testing locations and expensive equipment pose difficulties for individuals trying to be tested, especially in low-resource settings. Researchers have successfully presented models for detecting COVID-19 infection status using audio samples recorded in clinical settings 5, 15, suggesting that audio-based Artificial Intelligence models can be used to identify COVID-19. Such models have the potential to be deployed on smartphones for fast, widespread, and low-resource testing. However, while previous studies have trained models on cleaned audio samples collected mainly from clinical settings, audio samples collected from average smartphones may yield suboptimal quality data that is different from the clean data that models were trained on. This discrepancy may add a bias that affects COVID-19 status predictions. To tackle this issue, we propose a multi-branch deep learning network that is trained and tested on crowdsourced data where most of the data has not been manually processed and cleaned. Furthermore, the model achieves state-of-art results for the COUGHVID dataset 16. After breaking down results for each category, we have shown an AUC of 0.99 for audio samples with COVID-19 positive labels.
Author

Shelf entry
Permalink
- URL:
Impact factor
Access to the JCR database is permitted only to users from Slovenia. Your current IP address is not on the list of IP addresses with access permission, and authentication with the relevant AAI accout is required.
Year | Impact factor | Edition | Category | Classification | ||||
---|---|---|---|---|---|---|---|---|
JCR | SNIP | JCR | SNIP | JCR | SNIP | JCR | SNIP |
Impact factor
Select the library membership card:
If the library membership card is not in the list,
add a new one.
DRS, in which the journal is indexed
Database name | Field | Year |
---|
Links to authors' personal bibliographies | Links to information on researchers in the SICRIS system |
---|
Source: Personal bibliographies
and: SICRIS
The material is available in full text. If you wish to order the material anyway, click the Continue button.