VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
  • Triple intersection numbers of ▫$Q$▫-polynomial distance-regular graphs
    Urlep, Matjaž, 1982-
    We use the system of linear Diophantine equations introduced by Coolsaet and Jurišić to obtain information about a feasible family of distance-regular graphs with vanishing Krein parameter ... ▫$q_{22}^1$▫ and intersection arrays ▫$$\{(r+1)(r^3-1),r(r-1)(r^2+r-1),r^2-1;1,r(r+1),(r^2-1)(r^2+r-1)\}, \quad r \ge 2.$$▫ In this way we are able to calculate certain triple intersection numbers and prove nonexistence for all ▫$r \ge 3$▫. For ▫$r=3$▫ nonexistence was not known before, however it is well known that the intersection array for ▫$r=2$▫ uniquely determines the halved 7-cube. Then we show how to apply Terwilliger balanced set conditions for ▫$Q$▫-polynomial distance-regular graphs to produce additional linear Diophantine equations.
    Vrsta gradiva - članek, sestavni del
    Leto - 2012
    Jezik - angleški
    COBISS.SI-ID - 16316761