VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
  • Nonlinear nonhomogeneous singular problems
    Papageorgiou, Nikolaos, 1958- ; Rǎdulescu, Vicenţiu, 1958- ; Repovš, Dušan, 1954-
    We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator with a growth of order ▫$(p-1)$▫ near ▫$+\infty$▫ and with a reaction which has the competing effects of a ... parametric singular term and a ▫$(p-1)$▫-superlinear perturbation which does not satisfy the usual Ambrosetti-Rabinowitz condition. Using variational tools, together with suitable truncation and strong comparison techniques, we prove a "bifurcation-type" theorem that describes the set of positive solutions as the parameter ▫$\lambda$▫ moves on the positive semiaxis. We also show that for every ▫$\lambda > 0$▫, the problem has a smallest positive solution ▫$u^\ast_\lambda$▫ and we demonstrate the monotonicity and continuity properties of the map ▫$\lambda \mapsto u^\ast_\lambda$▫.
    Vir: Calculus of variations and partial differential equations. - ISSN 0944-2669 (Vol. 59, iss. 1, Feb. 2020, art. 9 [31 str.])
    Vrsta gradiva - članek, sestavni del ; neleposlovje za odrasle
    Leto - 2020
    Jezik - angleški
    COBISS.SI-ID - 18823001