VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
PDF
  • MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction [Elektronski vir] : expression and bioinformatic analysis
    Boštjančič, Emanuela, 1979 ; Zidar, Nina, 1960- ; Glavač, Damjan
    Background: Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial ... infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. Results:The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Conclusion: Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. (Abstract truncated at 2000 characters)
    Vir: BMC genomics [Elektronski vir]. - ISSN 1471-2164 (Vol. 13, 2012, str. 1-14)
    Vrsta gradiva - e-članek ; neleposlovje za odrasle
    Leto - 2012
    Jezik - angleški
    COBISS.SI-ID - 30428889