Narodna in univerzitetna knjižnica, Ljubljana (NUK)
Naročanje gradiva za izposojo na dom
Naročanje gradiva za izposojo v čitalnice
Naročanje kopij člankov
Urnik dostave gradiva z oznako DS v signaturi
  • Application of normalization method to fracture toughness testing of welds with pronounced strength heterogeneity : doctoral disertation
    Štefane, Primož
    This doctoral dissertation presents the results of an extensive fracture testing programme of welds with pronounced strength heterogeneity. Purpose of this programme was to determine fracture ... toughness of heterogeneous welds that contain a midplane crack. Application of standardized fracture testing methods in heterogeneous welds might lead to overestimation or underestimation of fracture toughness and consequentially to inaccurate assessment of structural integrity. Reasons for that are variations in mechanical properties of different material regions in the weld which have a significant impact on development of deformation at the crack tip, and consequently on the crack driving force. Experimental procedures in scope of this research include fabrication of weld sample plates, that were welded with MAG process. The welds were fabricated using two different electrodes, one with higher and one with lower mechanical properties, with respect to base material S690QL in order to replicate extreme variations of mechanical properties in the weldment. Fabricated welds were then characterized in detail using metallography, three-point bend impact testing, indentation hardness measurements and tensile testing of flat miniature and round bar standard tensile specimens. Resistance of welds to stable tearing was investigated by fracture testing of square surface cracked SE(B) specimens containing a weld midplane notch. J-integral has been estimated from plastic work, using the normalization data reduction method that is included in standard ASTM E1820. The advantage of the normalization data reduction method is that no special equipment or complex testing method is needed to measure ductile crack growth during fracture testing. The ductile crack growth is determined directly from the load-displacement record, by applying appropriate calibration function and physical lengths of initial and final cracks that were measured post-mortem with the nine-point method. Several correction factors had to be calibrated in order to successfully implement the normalization data reduction method to fracture testing of welds with pronounced strength heterogeneity. For that reason, parametric finite element analyses were conducted for several weld configurations. Finite element models incorporated plane strain conditions in order to provide calibrated factors that comply with plane strain equations included in ASTM E1820. Additionally, crack tip constraint has been extensively analysed and correlated with the plastic deformation fields. This clarified altered deformation behaviour of modelled welds in comparison with the base material and corresponding effect on fracture toughness. Finally, calibrated factors were applied to computation of J-integral from data that were measured during fracture testing. J-R resistance curves were constructed for the tested heterogeneous welds and compared to the ones of the base material. This directly showed the effect of variations of mechanical properties on the weld fracture behaviour.
    Vrsta gradiva - disertacija ; neleposlovje za odrasle
    Založništvo in izdelava - Maribor : [P. Štefane], 2022
    Jezik - angleški
    COBISS.SI-ID - 138416131

    Povezava(-e):

    Digitalna knjižnica Univerze v Mariboru – DKUM
    Digitalna knjižnica Slovenije - dLib.si

    Dostop z namenskih računalnikov v prostorih NUK



Rezervirajte gradivo na želenem mestu prevzema.

Mesto prevzema Status gradiva Rezervacija
Časopisna čitalnica
prosto - za čitalnico
Velika čitalnica
prosto - za čitalnico
Signatura – lokacija, inventarna št. ... Status izvoda
GS II 0000747839 glavno skladišče GS II 747839 glavno skladišče prosto - za čitalnico
loading ...
loading ...
loading ...