E-viri
Recenzirano Odprti dostop
  • Cyclic AMP‐dependent positi...
    Liu, Shui‐bing; Wang, Xin‐shang; Yue, Jiao; Yang, Le; Li, Xu‐hui; Hu, Li‐ning; Lu, Jing‐shan; Song, Qian; Zhang, Kun; Yang, Qi; Zhang, Ming‐ming; Bernabucci, Matteo; Zhao, Ming‐gao; Zhuo, Min

    Journal of neurochemistry, April 2020, Letnik: 153, Številka: 2
    Journal Article

    Cortical areas including the anterior cingulate cortex (ACC) play critical roles in different types of chronic pain. Most of previous studies focus on the sensory inputs from somatic areas, and less information about plastic changes in the cortex for visceral pain. In this study, chronic visceral pain animal model was established by injection with zymosan into the colon of adult male C57/BL6 mice. Whole cell patch‐clamp recording, behavioral tests, western blot, and Cannulation and ACC microinjection were employed to explore the role of adenylyl cyclase 1 (AC1) in the ACC of C57/BL6 and AC1 knock out mice. Integrative approaches were used to investigate possible changes of neuronal AC1 in the ACC after the injury. We found that AC1, a key enzyme for pain‐related cortical plasticity, was significantly increased in the ACC in an animal model of irritable bowel syndrome. Inhibiting AC1 activity by a selective AC1 inhibitor NB001 significantly reduced the up‐regulation of AC1 protein in the ACC. Furthermore, we found that AC1 is required for NMDA GluN2B receptor up‐regulation and increases of NMDA receptor‐mediated currents. These results suggest that AC1 may form a positive regulation in the cortex during chronic visceral pain. Our findings demonstrate that the up‐regulation of AC1 protein in the cortex may underlie the pathology of chronic visceral pain; and inhibiting AC1 activity may be beneficial for the treatment of visceral pain. Anterior cingulate cortex (ACC) plays critical roles in different types of chronic pain. Calcium‐stimulated, neuronal selective adenylyl cyclase subtype 1 (AC1) is critical for injury‐triggered cortical plasticity and chronic pain. We demonstrate that AC1 protein was up‐regulated in the ACC for a long‐period of time in a mouse model of chronic visceral pain. AC1 activity is required for the up‐regulation of AC1 protein, suggesting that AC1 may form a positive feedback in the cortex during chronic visceral pain. This is the first time to demonstrate that AC1 protein can undergo long‐term increases in central neurons after peripheral injuries.