E-viri
Recenzirano Odprti dostop
  • A retrotransposon in an HKT...
    Zhang, Ming; Cao, Yibo; Wang, Zhiping; Wang, Zhi‐qiang; Shi, Junpeng; Liang, Xiaoyan; Song, Weibin; Chen, Qijun; Lai, Jinsheng; Jiang, Caifu

    The New phytologist, February 2018, Letnik: 217, Številka: 3
    Journal Article

    Soil salinity is one of several major abiotic stresses that constrain maize productivity worldwide. An improved understanding of salt-tolerance mechanisms will thus enhance the breeding of salt-tolerant maize and boost productivity. Previous studies have indicated that the maintenance of leaf Na+ concentration is essential for maize salt tolerance, and the difference in leaf Na+ exclusion has previously been associated with variation in salt tolerance between maize varieties. Here, we report the identification and functional characterization of a maize salt-tolerance quantitative trait locus (QTL), Zea mays Na + Content1 (ZmNC1), which encodes an HKT-type transporter (designated as ZmHKT1). We show that a natural ZmHKT1 loss-of-function allele containing a retrotransposon insertion confers increased accumulation of Na+ in leaves, and salt hypersensitivity. We next show that ZmHKT1 encodes a plasma membrane-localized Na+-selective transporter, and is preferentially expressed in root stele (including the parenchyma cells surrounding the xylem vessels). We also show that loss of ZmHKT1 function increases xylem sap Na+ concentration and causes increased root-to-shoot Na+ delivery, indicating that ZmHKT1 promotes leaf Na+ exclusion and salt tolerance by withdrawing Na+ from the xylem sap. We conclude that ZmHKT1 is a major salt-tolerance QTL and identifies an important new gene target in breeding for improved maize salt tolerance.