E-viri
Recenzirano Odprti dostop
  • Calibration of the charge a...
    Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bhanderi, A.; Terrazas, I. Caro; Carr, R.; Cavanna, F.; Cerati, G.; Cianci, D.; Cohen, E.O.; Cooper-Troendle, L.; Crespo-Anadón, J.I.; Tutto, M. Del; Diaz, A.; Duffy, K.; Eberly, B.; Sanchez, L. Escudero; Esquivel, J.; Evans, J.J.; Foppiani, N.; Franco, D.; Furmanski, A.P.; Garcia-Gamez, D.; Gardiner, S.; Gramellini, E.; Gu, W.; Guenette, R.; Guzowski, P.; Hen, O.; Hill, C.; Horton-Smith, G.A.; Itay, R.; Ji, X.; Jiang, L.; Johnson, R.A.; Joshi, J.; Jwa, Y.-J.; Ketchum, W.; Kobilarcik, T.; Kreslo, I.; Lepetic, I.; Li, Y.; Lister, A.; Littlejohn, B.R.; Louis, W.C.; Lundberg, B.; Luo, X.; Mariani, C.; Marshall, J.; Caicedo, D.A. Martinez; Mastbaum, A.; Meddage, V.; Mohayai, T.; Moon, J.; Moore, C.D.; Mousseau, J.; Naples, D.; Neely, R.K.; Nienaber, P.; Nowak, J.; Palamara, O.; Pandey, V.; Papadopoulou, A.; Papavassiliou, V.; Paudel, A.; Pavlovic, Z.; Pulliam, G.; Ren, L.; Rochester, L.; Rogers, H.E.; Ross-Lonergan, M.; Rohr, C. Rudolf von; Russell, B.; Scanavini, G.; Schmitz, D.W.; Shaevitz, M.H.; Sinclair, J.; Snider, E.L.; Soleti, S.R.; Spentzouris, P.; Stancari, M.; John, J. St; Strauss, T.; Tang, W.; Terao, K.; Thornton, R.T.; Usher, T.; Pontseele, W. Van De; de Water, R.G. Van; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Wu, W.; Yang, T.; Yarbrough, G.; Zhang, C.

    Journal of instrumentation, 03/2020, Letnik: 15, Številka: 3
    Journal Article

    We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration.