E-viri
Recenzirano Odprti dostop
  • Suppression of the antiferr...
    Horio, M; Adachi, T; Mori, Y; Takahashi, A; Yoshida, T; Suzuki, H; Ambolode, 2nd, L C C; Okazaki, K; Ono, K; Kumigashira, H; Anzai, H; Arita, M; Namatame, H; Taniguchi, M; Ootsuki, D; Sawada, K; Takahashi, M; Mizokawa, T; Koike, Y; Fujimori, A

    Nature communications, 02/2016, Letnik: 7, Številka: 1
    Journal Article

    In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr(1.3-x)La0.7Ce(x)CuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime.