E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Arsenic induces ferroptosis...
    Li, Meng-Die; Fu, Lin; Lv, Bian-Bian; Xiang, Ying; Xiang, Hui-Xian; Xu, De-Xiang; Zhao, Hui

    Ecotoxicology and environmental safety, 06/2022, Letnik: 238
    Journal Article

    The goal of this study was to analyze whether mitochondria-associated endoplasmic reticulum membrane (MAMs) dysfunction mediated arsenic (As)-evoked pulmonary ferroptosis and acute lung injury (ALI). As exposure led to alveolar structure damage, inflammatory cell infiltration and pulmonary function decline in mice. Ferritin, the marker of iron overload, was increased, GPX4, the index of lipid peroxidation, was decreased in As-exposed lungs and pulmonary epithelial cells (MLE-12). Pretreatment with ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, alleviated As-evoked ALI. In addition, As-induced non-heme iron deposition was inhibited in Fer-1 pretreated-mice. Moreover, As-triggered mitochondria damage and ferroptosis were mitigated in Fer-1 pretreated-MLE-12 cells. Mechanistically, PERK phosphorylation and mitofusin-2 (Mfn-2) reduction was observed in As-exposed MLE-12 cells and mice lungs. Additionally, the interaction between PERK and Mfn-2 was downregulated and MAMs dysfunction was observed in As-exposed MLE-12 cells. Intriguingly, PERK inhibitor and Mfn-2-overexpression all mitigated As-induced ferroptosis in MLE-12 cells. Additionally, CLPP and mtHSP70, the markers of mitochondrial stress, were upregulated, mitochondrial ROS (mtROS) was elevated, mitochondrial membrane potential (MMP) and ATP were decreased in As-exposed MLE-12 cells. Mitoquinone mesylate (MitoQ), a novel mitochondrial-targeted antioxidant, alleviated As-induced excess mtROS, mitochondrial stress, MAMs dysfunction in pulmonary epithelial cells. Similarly, in vivo experiments indicated that MitoQ pretreatment countered As-induced pulmonary ferroptosis and ALI. These data indicated that mtROS-initiated MAMs dysfunction is, at least partially, implicated in As-evoked ferroptosis and ALI. Display omitted •Acute As exposure induced pulmonary function decline and ALI in mice.•Acute As exposure caused ferroptosis, MAMs dysfunction and mitochondrial stress in mice lungs and pulmonary epithelial cells.•Pretreatment with ferrostatin-1 alleviated As-induced pulmonary function decline and ALI.•PERK inhibitor and Mfn-2-overexpression inhibited As-evoked ferroptosis in pulmonary epithelial cells.•MitoQ neutralized As-mediated MAMs dysfunction, mtROS production and ferroptosis in pulmonary epithelial cells.•MitoQ abolished As-induced decline of the interaction between PERK and Mfn-2 in pulmonary epithelial cells.•MitoQ attenuated As-caused ferroptosis and ALI in mice.