DIKUL - logo
E-resources
Peer reviewed Open access
  • Xia, Min; Chen, Daxin; Endresz, Valeria; Lantos, Ildiko; Szabo, Andrea; Kakkar, Vijay; Lu, Xinjie

    PloS one, 2015, Volume: 10, Issue: 4
    Journal Article

    Atherosclerosis is increasingly recognized as a complex chronic inflammatory disease. Many more studies have extended vaccination against atherosclerosis by using epitopes from self-antigens or beyond and demonstrated that vaccination with antigens or derivatives could reduce the extent of the lesions in atherosclerosis-prone mice. Our previous study has demonstrated that construct AHHC ApoB100688-707 + hHSP60303-312 + hHSP60153-163 + Cpn derived peptide (C) significantly reduced atherosclerotic lesion. The aim of this study was to investigate whether AHHC can be modulated towards increased lesion reduction in mice by creating two other derivatives with a sequential epitope-substitution named RHHC in which A was replaced by an "R" (C5aR1-31) and RPHC with a further "H" (hHSP60303-312) conversion into "P" (protease-activated receptor-142-55) in mice. Antigenic epitopes were incorporated into a dendroaspin scaffold. Immunization of B6;129S-Ldlrtm1HerApobtm2Sgy/J mice with three constructs elicited production of high levels of antibodies against each epitope (apart from hHSP60153-163 and P which induced a low antibody response). Histological analyses demonstrated that the mice immunized with either RPHC or RHHC showed significant reductions in the size of atherosclerostic lesions compared to those with AHHC (69.5±1.1% versus 55.7±3.4%, P<0.01 or 65.6±1.3% versus 55.7±3.4%, P<0.01). Reduction of plaque size in the aortic sinus and descending aorta correlated with alterations in cellular immune responses when compared with controls. We conclude that a recombinant construct RPHC may provide new antigenic and structural features which are favorable for significant reduction in atherosclerotic lesion formation. This approach offers a novel strategy for developing anti-atherosclerotic agents.