DIKUL - logo
E-resources
Peer reviewed Open access
  • Effect of bioflocs on growt...
    Kim, Su‐Kyoung; Pang, Zhenguo; Seo, Hyung‐Chel; Cho, Yeong‐Rok; Samocha, Tzachi; Jang, In‐Kwon

    Aquaculture research, January 2014, Volume: 45, Issue: 2
    Journal Article

    The bioflocs technology (BFT) for shrimp production has been proposed as a sustainable practice capable of reducing environmental impacts and preventing pathogen introduction. The microbial community associated with BFT not only detoxifies nutrients, but also can improve feed utilization and animal growth. Biofloc system contains abundant number of bacteria of which cell wall consists of various components such as bacterial lipopolysaccharide, peptidoglycan and β‐1, 3‐glucans, and is known as stimulating nonspecific immune activity of shrimp. Bioflocs, therefore, are assumed to enhance shrimp immunity because they consume the bioflocs as additional food source. Although there are benefits for having an in situ microbial community in BFT systems, better understanding on these microorganisms, in particular molecular level, is needed. A fourteen‐day culture trial was conducted with postlarvae of Litopenaeus vannamei in the presence and absence of bioflocs. To determine mRNA expression levels of shrimp, we selected six genes (prophenoloxidase1, prophenoloxidase2, prophenoloxidase activation enzyme, serine proteinase1, masquerade‐like proteinase, and ras‐related nuclear protein) which are involved in a series of responses known as the prophenoloxidase (proPO) cascade, one of the major innate immune responses in crustaceans. Significant differences in shrimp survival and final body weights were found between the clear water and in the biofloc treatments. mRNA expression levels were significantly higher in the biofloc treatment than the clear water control. These results suggest that the presence of bioflocs in the culture medium gives positive effect on growth and immune‐related genes expression in L.vannamei postlarvae.