DIKUL - logo
E-resources
Full text
Peer reviewed
  • Vertical-Cavity Surface-Emi...
    Babichev, A. V.; Karachinskii, L. Ya; Novikov, I. I.; Gladyshev, A. G.; Blokhin, S. A.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Voropaev, K. O.; Ionov, A. S.; Agustin, M.; Ledentsov, N. N.; Egorov, A. Yu

    Technical physics letters, 01/2018, Volume: 44, Issue: 1
    Journal Article

    The results of studies on fabrication of vertical-cavity surface-emitting 1.55-μm lasers by fusing AlGaAs/GaAs distributed-Bragg-reflector wafers and an active region based on thin In 0.74 Ga 0.26 As quantum wells grown by molecular-beam epitaxy are presented. Lasers with a current aperture diameter of 8 μm exhibit continuous lasing with a threshold current below 1.5 mA, an output optical power of 6 mW, and an efficiency of approximately 22%. Single-mode lasing with a side-mode suppression ratio of 40–45 dB is observed in the entire operating current range. The effective modulation frequency of these lasers is as high as 9 GHz and is limited by the low parasitic cutoff frequency and self-heating.