DIKUL - logo
E-resources
Full text
Peer reviewed
  • The more adaptive to change...
    Brininger, C.; Spradlin, S.; Cobani, L.; Evilia, C.

    Seminars in cell & developmental biology, December 2018, 2018-12-00, 20181201, Volume: 84
    Journal Article

    Discovering how organisms and their proteins adapt to extreme conditions is a complicated process. Every condition has its own set of adaptations that make it uniquely stable in its environment. The purpose of our review is to discuss what is known in the extremophilic community about protein adaptations. To simplify our mission, we broke the extremophiles into three broad categories: thermophiles, halophiles and psychrophiles. While there are crossover organisms- organisms that exist in two or more extremes, like heat plus acid or cold plus pressure, most of them have a primary adaptation that is within one of these categories which tends to be the most easily identifiable one. While the generally known adaptations are still accepted, like thermophilic proteins have increased ionic interactions and a hardier hydrophobic core, halophilic proteins have a large increase in acidic amino acids and amino acid/peptide insertions and psychrophiles have a much more open structure and reduced ionic interactions, some new information has come to light. Thermophilic stability can be improved by increased subunit-subunit or subunit-cofactor interactions. Halophilic proteins have reversible folding when in the presence of salt. Psychrophilic proteins have an increase in cavities that not only decrease the formation of ice, but also increase flexibility under low temperature conditions. In a proof of concept experiment, we applied what is currently known about adaptations to a well characterized protein, malate dehydrogenase (MDH). While this protein has been profiled in the literature, we are applying our adaptation predictions to its sequence and structure to see if the described adaptations apply. Our analysis demonstrates that thermophilic and halophilic adaptations fit the corresponding MDHs very well. However, because the number of psychrophiles MDH sequences and structures is low, our analysis on psychrophiles is inconclusive and needs more information. By discussing known extremophilic adaptations and applying them to a random, conserved protein, we have found that general adaptations are conserved and can be predicted in proposed extremophilic proteins. The present field of extremophile adaptations is discovering more and more ways organisms and their proteins have adapted. The more that is learned about protein adaptation, the closer we get to custom proteins, designed to fit any extreme and solve some of the world’s most pressing environmental problems.