DIKUL - logo
E-resources
Full text
Peer reviewed
  • Applications of 3D point cl...
    Wang, Qian; Kim, Min-Koo

    Advanced engineering informatics, January 2019, 2019-01-00, Volume: 39
    Journal Article

    3D point cloud data obtained from laser scans, images, and videos are able to provide accurate and fast records of the 3D geometries of construction-related objects. Thus, the construction industry has been using point cloud data for a variety of purposes including 3D model reconstruction, geometry quality inspection, construction progress tracking, etc. Although a number of studies have been reported on applying point cloud data for the construction industry in the recent decades, there has not been any systematic review that summaries these applications and points out the research gaps and future research directions. This paper, therefore, aims to provide a thorough review on the applications of 3D point cloud data in the construction industry and to provide recommendations on future research directions in this area. A total of 197 research papers were collected in this study through a two-fold literature search, which were published within a fifteen-year period from 2004 to 2018. Based on the collected papers, applications of 3D point cloud data in the construction industry are reviewed according to three categories including (1) 3D model reconstruction, (2) geometry quality inspection, and (3) other applications. Following the literature review, this paper discusses on the acquisition and processing of point cloud data, particularly focusing on how to properly perform data acquisition and processing to fulfill the needs of the intended construction applications. Specifically, the determination of required point cloud data quality and the determination of data acquisition parameters are discussed with regard to data acquisition, and the extraction and utilization of semantic information and the platforms for data visualization and processing are discussed with regard to data processing. Based on the review of applications and the following discussions, research gaps and future research directions are recommended including (1) application-oriented data acquisition, (2) semantic enrichment for as-is BIM, (3) geometry quality inspection in fabrication phase, and (4) real-time visualization and processing.