DIKUL - logo
E-resources
Peer reviewed Open access
  • Targeting Tumor-Associated ...
    Miao, Lei; Liu, Qi; Lin, C Michael; Luo, Cong; Wang, Yuhua; Liu, Lina; Yin, Weiyan; Hu, Shihao; Kim, William Y; Huang, Leaf

    Cancer research (Chicago, Ill.), 02/2017, Volume: 77, Issue: 3
    Journal Article

    The off-target distribution of anticancer nanoparticles to fibroblasts creates a barrier to the effective treatment of desmoplastic tumors. However, we hypothesized that this nanoparticle detriment might be exploited to target the expression of secreted cytotoxic proteins from tumor-associated fibroblasts (TAF) as an anticancer strategy. In addressing this hypothesis, plasmids encoding the secretable TNF-related factor sTRAIL were loaded into lipid-coated protamine DNA complexes and administered by infusion in a murine xenograft model of human desmoplastic bladder carcinoma. Three doses were sufficient to generate approximately 70% of TAFs as sTRAIL-producing cells. sTRAIL triggered apoptosis in tumor cell nests adjacent to TAFs. Furthermore, it reverted residual fibroblasts to a quiescent state due to insufficient activation, further compromising tumor growth and remodeling the microenvironment to favor second-wave nanotherapy. We confirmed the efficacy of this strategy in an orthotopic xenograft model of human pancreatic cancer, where the desmoplastic stroma is well known to be a major barrier to the delivery of therapeutic nanoparticles. Collectively, our results offer a proof of concept for the use of nanoparticles to modify TAFs as an effective strategy to treat desmoplastic cancers. Cancer Res; 77(3); 719-31. ©2016 AACR.