DIKUL - logo
E-resources
Full text
Peer reviewed Open access
  • Study on the Optimization o...
    Qu, Yongyu; Song, Bo; Cai, Shubing; Rao, Pinzeng; Lin, Xichen

    Water, 01/2024, Volume: 16, Issue: 2
    Journal Article

    Recently, the Chinese government has implemented stringent water requirements based on the concept of ‘Basing four aspects on water resources’. However, existing research has inadequately addressed the constraints of water resources on population, city boundaries, land, and production, failing to adequately analyze the interplay between water resource limitations and urban development. Recognizing the interconnectedness between urban water use and economic development, a multi-objective model becomes crucial for optimizing urban water resources. This study establishes a nonlinear multi-objective water resources joint optimization model, aligning with the “Basing four aspects on water resources” requirement to maximize urban GDP and minimize total water use. A genetic algorithm (NSGA-II Algorithm) is applied to solve this complex nonlinear multi-objective model and obtain the Pareto solution set, addressing information loss inherent in the traditional water quota method. The model was tested in Wujiang District, an area located in China’s Jiangsu Province that has been rapidly urbanizing over the past few decades, and yielded 50 non-inferior water resource optimization schemes. The results reveal that the Pareto solution set visually illustrates the competition among objectives and comprehensively displays the interplay between water and urban development. The model takes a holistic approach to consider the relationships between water resources and urban population, land use, and industries, clearly presenting their intricate interdependencies. This study serves as a valuable reference for the rational optimization of water resources in urban development.