DIKUL - logo
E-resources
Full text
Peer reviewed
  • Feedback control of two sup...
    Webster, Thaddaeus A.; Hadley, Brian C.; Dickson, Marissa; Busa, John K.; Jaques, Colin; Mason, Carrie

    Bioprocess and biosystems engineering, 2021/1, Volume: 44, Issue: 1
    Journal Article

    The use of Raman models for glucose and phenylalanine concentrations to provide the signal for a control algorithm to continuously adjust the feed rate of two separate supplemental feeds during the fed-batch culture of a CHOK1SV GS-KO® cell line in a platform process was evaluated. Automated feed rate adjustment of the glucose feed using a Raman model for glucose concentration, maintained the glucose concentration within the desired target (average deviation ± 0.49 g/L). Automated feed rate adjustment of the nutrient feed using a Raman model for phenylalanine concentration, maintained phenylalanine concentrations within the target (average deviation ± 29.97 mg/L). The novel use of a Raman model for phenylalanine concentration, combined with a Raman model for glucose concentration, to maintain target glucose and phenylalanine concentrations through feed-rate adjustments, reduced the average cumulative glucose and nutrient feed additions (19% and 27% respectively) compared to manually adjusted cultures. Additionally, the proposed automation strategy led to lower osmolality during culture, maintained the nutrient environment more consistently, and achieved higher harvest product concentration (≈ 20% higher) compared to typical fed-batch process control for the cell line and platform process evaluated. Furthermore, the proposed feeding strategy yielded similar glycosylation and charge variant profiles compared to manually adjusted fed-batch process control. The ability to continuously adjust the feed rate addition of two separate feeds in this manner helps enable a shift away from the current daily offline sampling needed to control fed-batch mammalian cell culture during clinical and commercial manufacturing on platform processes.