DIKUL - logo
E-resources
Peer reviewed Open access
  • Comparative Analysis of Fer...
    HAMILTON, Bronwyn E; NESBIT, Gary M; DOSA, Edit; GAHRAMANOV, Seymur; ROONEY, Bill; NESBIT, Eric G; RAINES, Joshua; NEUWELT, Edward A

    American journal of roentgenology, 10/2011, Volume: 197, Issue: 4
    Journal Article

    Ferumoxytol, an ultrasmall superparamagnetic iron oxide particle, has been suggested as a potential alternative MRI contrast agent in patients with renal failure. We compared ferumoxytol to gadoteridol enhancement on T1- and T2-weighted MRI in CNS disorders to explore its diagnostic utility. Data were collected from three protocols in 70 adults who underwent alternate-day gadoteridol- and ferumoxytol-enhanced MRI using identical parameters. Two neuroradiologists measured lesion-enhancing size and intensity on contrast-enhanced T1-weighted images in consensus. T2-weighted images were evaluated for the presence of contrast-enhanced hypointensity. Mixed model repeated measures analysis of variance determined differences between T1-weighted enhancement size and intensity for individual protocols and group. After exclusions, 49 MRI studies in 29 men and 20 women (mean age, 51 years) were assessed. T1-weighted estimated enhancing sizes were different between agents (p = 0.0456) as a group; however, no differences were observed with untreated gliomas (n = 17) in two protocols (p = 1.0 and p = 0.99, respectively). Differences in T1-weighted enhancement intensity between agents were significant for the group overall (p = 0.0006); however, three-way interactions were not significant (p = 0.1233). T2-weighted images were assessed for contrast-enhanced hypointensity, observed in 26 of 49 (53%) ferumoxytol and zero of 49 (0%) gadoteridol scans. Ferumoxytol may be a useful MRI contrast agent in patients who are unable to receive gadolinium-based contrast agents. Greater experience with a wider variety of disorders is necessary to understand differences in enhancement with ferumoxytol compared with gadolinium-based contrast agents, given their different mechanisms of action.