DIKUL - logo
E-resources
Peer reviewed Open access
  • Discovery of the acetyl cat...
    Cernicharo, J; Cabezas, C; Bailleux, S; Margulès, L; Motiyenko, R; Zou, L; Endo, Y; Bermúdez, C; Agúndez, M; Marcelino, N; Lefloch, B; Tercero, B; de Vicente, P

    Astronomy and astrophysics (Berlin), 02/2021, Volume: 646
    Journal Article

    Using the Yebes 40m and IRAM 30m radiotelescopes, we detected two series of harmonically related lines in space that can be fitted to a symmetric rotor. The lines have been seen towards the cold dense cores TMC-1, L483, L1527, and L1544. High level of theory ab initio calculations indicate that the best possible candidate is the acetyl cation, CH3CO+, which is the most stable product resulting from the protonation of ketene. We have produced this species in the laboratory and observed its rotational transitions Ju = 10 up to Ju = 27. Hence, we report the discovery of CH3CO+ in space based on our observations, theoretical calculations, and laboratory experiments. The derived rotational and distortion constants allow us to predict the spectrum of CH3CO+ with high accuracy up to 500 GHz. We derive an abundance ratio N(H2CCO)/N(CH3CO+)~44. The high abundance of the protonated form of H2CCO is due to the high proton affinity of the neutral species. The other isomer, H2CCOH+, is found to be 178.9 kJ mol-1 above CH3CO+. The observed intensity ratio between the K=0 and K=1 lines, ~2.2, strongly suggests that the A and E symmetry states have suffered interconversion processes due to collisions with H and/or H2, or during their formation through the reaction of H 3 + with H2CCO.