DIKUL - logo
E-resources
Full text
Peer reviewed
  • High Performance Dynamic X‐...
    Peng, Qiu‐Chen; Si, Yu‐Bing; Yuan, Jia‐Wang; Yang, Qi; Gao, Zi‐Ying; Liu, Yuan‐Yuan; Wang, Zhao‐Yang; Li, Kai; Zang, Shuang‐Quan; Zhong Tang, Ben

    Angewandte Chemie International Edition, October 2, 2023, Volume: 62, Issue: 40
    Journal Article

    X‐ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X‐ray flexible imaging for the real‐time observation of the internal structure of complex materials is the most challenging type of X‐ray imaging technology, which requires high‐performance X‐ray scintillators with high X‐ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation‐induced emission (AIE) feature was introduced for constructing a copper iodide cluster‐based metal–organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod‐like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high‐performance X‐ray imaging in extremely humid environments. Furthermore, dynamic X‐ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm−1. High performance dynamic X‐ray flexible imaging in extremely humid environments was achieved using copper iodide cluster‐based MOF microcrystal scintillator, which shows a high X‐ray absorption efficiency, environmental friendliness, good stability and excellent processability.Twitter: High Performance Dynamic X‐ray Flexible Imaging Realized Using a Copper Iodide