DIKUL - logo
E-resources
Full text
Peer reviewed Open access
  • Bismuth Sillenite Crystals ...
    Baaloudj, Oussama; Kenfoud, Hamza; Badawi, Ahmad K.; Assadi, Achraf Amir; El Jery, Atef; Assadi, Aymen Amine; Amrane, Abdeltif

    Catalysts, 01/2022, Volume: 12, Issue: 5
    Journal Article

    Photocatalysis has been widely studied for environmental applications and water treatment as one of the advanced oxidation processes (AOPs). Among semiconductors that have been employed as catalysts in photocatalytic applications, bismuth sillenite crystals have gained a great deal of interest in recent years due to their exceptional characteristics, and to date, several sillenite material systems have been developed and their applications in photoactivity are under study. In this review paper, recent studies on the use of Bi-based sillenites for water treatment have been compiled and discussed. This review also describes the properties of Bi-based sillenite crystals and their advantages in the photocatalytic process. Various strategies used to improve photocatalytic performance are also reviewed and discussed, focusing on the specific advantages and challenges presented by sillenite-based photocatalysts. Furthermore, a critical point of certain bismuth catalysts in the literature that were found to be different from that reported and correspond to the sillenite form has also been reviewed. The effectiveness of some sillenites for environmental applications has been compared, and it has demonstrated that the activity of sillenites varies depending on the metal from which they were produced. Based on the reviewed literature, this review summarizes the current status of work with binary sillenite and provides useful insights for its future development, and it can be suggested that Bismuth sillenite crystals can be promising photocatalysts for water treatment, especially for degrading and reducing organic and inorganic contaminants. Our final review focus will emphasize the prospects and challenges of using those photocatalysts for environmental remediation and renewable energy applications.