DIKUL - logo
E-resources
Full text
Peer reviewed
  • Impact response and crashwo...
    Liu, Xiaochuan; Bai, Chunyu; Xi, Xulong; Zhou, Sicong; Zhang, Xinyue; Li, Xiaocheng; Ren, Yiru; Yang, Jialing; Yang, Xianfeng

    Progress in aerospace sciences, 07/2024, Volume: 148
    Journal Article

    Airplanes are inevitably subjected to various impact loading conditions in the event of emergency landing. An airplane crash scenario is a complex nonlinear impact event which involves large deformation, material fracture, structural failure, and dynamic contact. The impact response becomes more complicated due to the presence of composite materials, which are becoming the dominated choice for aircraft components. However, the impact damage and failure severity of composite fuselage sections can be effectively alleviated with optimized energy absorbing (EA) design. Accordingly, the crashworthy design of fuselage sections has always remained a top priority to prevent catastrophic structural failure and significant casualties. This paper presents a systematic literature review on the impact response and EA design of composite fuselage structures. Firstly, the typical composite materials such as composite tubes, corrugated composite plates, hybrid composite structures and bio-inspired composite materials are introduced to dissipate the impact kinetic energy during a crash. Then, the analytical models and finite element modeling methods of composite bolted joint structures are described to investigate their impact response and failure mode. The crashworthy design of typical composite fuselage structures including sub-cargo support struts, cabin floor support struts, fuselage frame and cabin floor/fuselage frame connection are described in this paper. Finally, an emphasis is placed on the evaluation criteria of the occupant crash safety and the crashworthy evaluation method of fuselage structures.