DIKUL - logo
E-resources
Full text
Peer reviewed
  • Design, growth and characte...
    Su, Ching-Hua

    Progress in crystal growth and characterization of materials, 20/May , Volume: 65, Issue: 2
    Journal Article

    Thermoelectric devices convert thermal energy, i.e. heat, into electric energy. With no moving parts, the thermoelectric generator has demonstrated its advantage of long-duration operational reliability. The IV–VI compound semiconductor PbTe-based materials have been widely adopted for the thermoelectric applications in the medium temperature range of 350–650 °C. In most of the reports, thermoelectric materials were manufactured by a hot pressing or quench and annealing method. The recent advancements in the converting efficiency of thermoelectrics, including PbTe-based materials, have been attributed to the modification on material inhomogeneity of microstructures by hot pressing or simply cooling the melt to reduce the thermal conductivity. On the other hand, due to its time-consuming preparation/processing and unnecessary good crystalline quality (for thermoelectric applications), the processing of thermoelectric materials by crystal growth resulted in very few investigations. In this report, the design and growth of the PbTe-based materials solidified from the melt for thermoelectric applications as well as the results of their thermoelectric characterizations will be reviewed. It shows that, besides its Figure of Merit comparable to other processing methods, the melt grown PbTe material has several additional capabilities, including the reproducibility, thermal stability and the functional gradient characteristics from the variation of properties along the growth length.