DIKUL - logo
E-resources
Full text
Peer reviewed
  • A review on the deteriorati...
    Yi, Yong; Zhu, Deju; Guo, Shuaicheng; Zhang, Zuhua; Shi, Caijun

    Cement & concrete composites, October 2020, 2020-10-00, Volume: 113
    Journal Article

    This paper presents a review of the deterioration of concrete under seawater attack with particular interests in field exposure. The research reported in the literature has shown that salinity of seawater in different areas varies considerably but the type of ions and their proportion are similar. Because of this variation, laboratory studies should use specific artificial seawater to simulate on field environments. The phase changes induced by chloride, magnesium and sulfate ions contained in seawater are reviewed. The interaction between hydrates and chloride ion can lead to the formation Friedel's and Kuzel's salts. Magnesium ion can replace the calcium in Portlandite, and lowers the alkalinity of pore solution and eventually destabilizes C-S-H gel. The expansive ettringite is inhibited at the presence of chloride ions. At the tidal zone, the phase change mainly occurs on the surface of concrete, which weakens the structure and leads to spalling and delamination under the physical attack of the wave. Based on the existing deterioration mechanisms, the protocols to enhance the durability performance of marine concrete are also reviewed, such as using supplementary cementitious materials (SCMs) to mitigate rate of chloride penetration and, more promisingly, to use alternative binder systems. This paper also proposes a concept of designing a more durable concrete cover system by enhancing the chemical stability of cement hydrates, rapid self-healing and intelligent alkalinity control.