DIKUL - logo
E-resources
Full text
Peer reviewed
  • Invasive plant Reynoutria j...
    Stefanowicz, Anna M.; Kapusta, Paweł; Stanek, Małgorzata; Frąc, Magdalena; Oszust, Karolina; Woch, Marcin W.; Zubek, Szymon

    The Science of the total environment, 05/2021, Volume: 767
    Journal Article

    Reynoutria japonica is one of the most invasive plant species. Its success in new habitats may be associated with the release of secondary metabolites. The aim of this study was to compare phenolic concentrations in plant biomass and soils between plots with R. japonica and resident plants (control), and determine the effects of these compounds on soil microbial communities. Samples of plant shoots and rhizomes/roots, and soil were collected from 25 paired plots in fallow and riparian habitats in Poland. We measured concentrations of total phenolics, condensed tannins, catechin, chlorogenic acid, emodin, epicatechin, hyperoside, physcion, piceatannol, polydatin, procyanidin B3, quercetin, resveratrol, and resveratroloside. Soil microbial parameters were represented by acid and alkaline phosphomonoesterases, β-glucosidase, phenoloxidase, and peroxidase activity, culturable bacteria activity and functional diversity measured with Biolog Ecoplates, and microbial biomass and community structure measured with phospholipid fatty acid (PLFA) analysis. We found that concentrations of total phenolics and condensed tannins were very high in R. japonica leaves and rhizomes/roots, and concentrations of most phenolic compounds were very high in R. japonica rhizomes/roots when compared to resident plant species. Concentrations of most phenolics in mineral soil did not differ between R. japonica and control plots; the only exceptions were catechin and resveratrol which were higher and lower, respectively, under the invader. Total microbial and bacterial (G+, G–) biomass was decreased by approx. 30% and fungal biomass by approx. 25% in invaded soils in comparison to control. Among soil functional microbial parameters, only peroxidase activity and functional diversity differed between R. japonica and resident plant plots; peroxidase activity was higher, while functional diversity was lower in soil under R. japonica. The negative effects of R. japonica on microbial biomass may be related to catechin or its polymers (proanthocyanidins) or to other phenolics contained in high concentrations in R. japonica rhizomes. Display omitted •Biomass of invasive Reynoutria japonica contained large amounts of phenolics.•Soil phenolic contents hardly differed between R. japonica and control.•Catechin was higher and resveratrol was lower in R. japonica relative to control soil.•Soil bacterial and fungal biomass were clearly reduced by invasion.•Invasion hardly affected the activity of soil microbial communities.