DIKUL - logo
E-resources
Full text
Peer reviewed
  • Nanospace Engineering of Me...
    Chen, Cheng‐Xia; Wei, Zhang‐Wen; Pham, Tony; Lan, Pui Ching; Zhang, Lei; Forrest, Katherine A.; Chen, Sha; Al‐Enizi, Abdullah M.; Nafady, Ayman; Su, Cheng‐Yong; Ma, Shengqian

    Angewandte Chemie International Edition, April 19, 2021, Volume: 60, Issue: 17
    Journal Article

    Herein, a dynamic spacer installation (DSI) strategy has been implemented to construct a series of multifunctional metal—organic frameworks (MOFs), LIFM‐61/31/62/63, with optimized pore space and pore environment for ethane/ethylene separation. In this respect, a series of linear dicarboxylic acids were deliberately installed in the prototype MOF, LIFM‐28, leading to a dramatically increased pore volume (from 0.41 to 0.82 cm3 g−1) and reduced pore size (from 11.1×11.1 Å2 to 5.6×5.6 Å2). The increased pore volume endows the multifunctional MOFs with much higher ethane adsorption capacity, especially for LIFM‐63 (4.8 mmol g−1), representing nearly three times as much ethane as the prototypical counterpart (1.7 mmol g−1) at 273 K and 1 bar. Meanwhile, the reduced pore size imparts enhanced ethane/ethylene selectivity of the multifunctional MOFs. Theoretical calculations and dynamic breakthrough experiments confirm that the DSI is a promising approach for the rational design of multifunctional MOFs for this challenging task. A dynamic spacer installation (DSI) strategy has been developed to realize a series of multifunctional metal—organic frameworks (MOFs) with optimized pore space and pore environment for ethane/ethylene separation. The installation of functional spacers into the proto‐LIFM‐28 not only improves the pore volume, but also reduces the pore size, leading to enhanced C2H6/C2H4 separation performance.