DIKUL - logo
E-resources
Peer reviewed Open access
  • Noninvasive prenatal screen...
    Zhang, Bin; Lu, Bei-Yi; Yu, Bin; Zheng, Fang-Xiu; Zhou, Qin; Chen, Ying-Ping; Zhang, Xiao-Qing

    Journal of international medical research, 04/2017, Volume: 45, Issue: 2
    Journal Article

    Objective To explore the feasibility of high-throughput massively parallel genomic DNA sequencing technology for the noninvasive prenatal detection of fetal sex chromosome aneuploidies (SCAs). Methods The study enrolled pregnant women who were prepared to undergo noninvasive prenatal testing (NIPT) in the second trimester. Cell-free fetal DNA (cffDNA) was extracted from the mother’s peripheral venous blood and a high-throughput sequencing procedure was undertaken. Patients identified as having pregnancies associated with SCAs were offered prenatal fetal chromosomal karyotyping. Results The study enrolled 10 275 pregnant women who were prepared to undergo NIPT. Of these, 57 pregnant women (0.55%) showed fetal SCA, including 27 with Turner syndrome (45,X), eight with Triple X syndrome (47,XXX), 12 with Klinefelter syndrome (47,XXY) and three with 47,XYY. Thirty-three pregnant women agreed to undergo fetal karyotyping and 18 had results consistent with NIPT, while 15 patients received a normal karyotype result. The overall positive predictive value of NIPT for detecting SCAs was 54.54% (18/33) and for detecting Turner syndrome (45,X) was 29.41% (5/17). Conclusion NIPT can be used to identify fetal SCAs by analysing cffDNA using massively parallel genomic sequencing, although the accuracy needs to be improved particularly for Turner syndrome (45,X).