DIKUL - logo
E-resources
Peer reviewed Open access
  • Computational insights into...
    Girdhar, Amandeep; Bharathi, Vidhya; Tiwari, Vikas Ramyagya; Abhishek, Suman; Deeksha, Waghela; Mahawar, Usha Saraswat; Raju, Gembali; Singh, Sandeep Kumar; Prabusankar, Ganesan; Rajakumara, Eerappa; Patel, Basant K.

    International journal of biological macromolecules, 03/2020, Volume: 147
    Journal Article

    TDP-43 is an RNA/DNA-binding protein which is also implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) disease. TDP-43's cytoplasmic mis-localization, liquid-liquid phase separation (LLPS) due to RNA depletion and aggregation, are proposedly important TDP-43-toxicity causing mechanisms. So far, therapeutic options for ALS are extremely ineffective hence, multi-faceted approaches such as targeting the oxidative stress and inhibiting the TDP-43's aggregation, are being actively pursued. Recently, we have identified an acridine derivative, AIM4, as an anti-TDP-43 aggregation molecule however, its mechanism is not deciphered. Here, we have utilized computational tools to examine binding site(s) of AIM4 in the TDP-43 structure and compared with other relevant compounds. We find that AIM4 has a binding site in the C-terminal amyloidogenic region (aa: 288–319), with Gly-288 & Phe-289 residues which are also important for TDP-43's LLPS. Importantly, alike to previously reported effects of RNA, AIM4 could also inhibit the in vitro LLPS of a C-terminal fragment TDP-432C bearing an A315T familial mutation. Furthermore, isothermal titration calorimetry (ITC) data also support the binding of AIM4 to TDP-432C-A315T. This antagonism of AIM4 towards TDP-43's LLPS and presence of binding site of AIM4 on TDP-43 support AIM4's potential to be an important molecule towards ALS therapeutic research.